3.569 \(\int \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx\)

Optimal. Leaf size=328 \[ \frac {(a+b) \left (a^2-4 a b+b^2\right ) \tan ^{-1}\left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {(a+b) \left (a^2-4 a b+b^2\right ) \tan ^{-1}\left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2} d}+\frac {2 b \left (3 a^2-b^2\right ) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {2 a \left (a^2-3 b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}-\frac {2 b \left (3 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{d}-\frac {(a-b) \left (a^2+4 a b+b^2\right ) \log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2} d}+\frac {(a-b) \left (a^2+4 a b+b^2\right ) \log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2} d}+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{63 d} \]

[Out]

-1/2*(a+b)*(a^2-4*a*b+b^2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))/d*2^(1/2)-1/2*(a+b)*(a^2-4*a*b+b^2)*arctan(1+2^
(1/2)*tan(d*x+c)^(1/2))/d*2^(1/2)-1/4*(a-b)*(a^2+4*a*b+b^2)*ln(1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/d*2^(1/2
)+1/4*(a-b)*(a^2+4*a*b+b^2)*ln(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/d*2^(1/2)-2*b*(3*a^2-b^2)*tan(d*x+c)^(1/
2)/d+2/3*a*(a^2-3*b^2)*tan(d*x+c)^(3/2)/d+2/5*b*(3*a^2-b^2)*tan(d*x+c)^(5/2)/d+40/63*a*b^2*tan(d*x+c)^(7/2)/d+
2/9*b^2*tan(d*x+c)^(7/2)*(a+b*tan(d*x+c))/d

________________________________________________________________________________________

Rubi [A]  time = 0.46, antiderivative size = 328, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 10, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.435, Rules used = {3566, 3630, 3528, 3534, 1168, 1162, 617, 204, 1165, 628} \[ \frac {2 b \left (3 a^2-b^2\right ) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {2 a \left (a^2-3 b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {(a+b) \left (a^2-4 a b+b^2\right ) \tan ^{-1}\left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {(a+b) \left (a^2-4 a b+b^2\right ) \tan ^{-1}\left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2} d}-\frac {2 b \left (3 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{d}-\frac {(a-b) \left (a^2+4 a b+b^2\right ) \log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2} d}+\frac {(a-b) \left (a^2+4 a b+b^2\right ) \log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2} d}+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{63 d} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^(5/2)*(a + b*Tan[c + d*x])^3,x]

[Out]

((a + b)*(a^2 - 4*a*b + b^2)*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*d) - ((a + b)*(a^2 - 4*a*b + b^2
)*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]])/(Sqrt[2]*d) - ((a - b)*(a^2 + 4*a*b + b^2)*Log[1 - Sqrt[2]*Sqrt[Tan[
c + d*x]] + Tan[c + d*x]])/(2*Sqrt[2]*d) + ((a - b)*(a^2 + 4*a*b + b^2)*Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + T
an[c + d*x]])/(2*Sqrt[2]*d) - (2*b*(3*a^2 - b^2)*Sqrt[Tan[c + d*x]])/d + (2*a*(a^2 - 3*b^2)*Tan[c + d*x]^(3/2)
)/(3*d) + (2*b*(3*a^2 - b^2)*Tan[c + d*x]^(5/2))/(5*d) + (40*a*b^2*Tan[c + d*x]^(7/2))/(63*d) + (2*b^2*Tan[c +
 d*x]^(7/2)*(a + b*Tan[c + d*x]))/(9*d)

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 3528

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(d
*(a + b*Tan[e + f*x])^m)/(f*m), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 3566

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(b^2*(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1))/(d*f*(m + n - 1)), x] + Dist[1/(d*(m + n -
1)), Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + f*x])^n*Simp[a^3*d*(m + n - 1) - b^2*(b*c*(m - 2) + a*d*(
1 + n)) + b*d*(m + n - 1)*(3*a^2 - b^2)*Tan[e + f*x] - b^2*(b*c*(m - 2) - a*d*(3*m + 2*n - 4))*Tan[e + f*x]^2,
 x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
&& IntegerQ[2*m] && GtQ[m, 2] && (GeQ[n, -1] || IntegerQ[m]) &&  !(IGtQ[n, 2] && ( !IntegerQ[m] || (EqQ[c, 0]
&& NeQ[a, 0])))

Rule 3630

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(C*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Int[(a + b*Tan[e + f*x])
^m*Simp[A - C + B*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0]
&&  !LeQ[m, -1]

Rubi steps

\begin {align*} \int \tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^3 \, dx &=\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}+\frac {2}{9} \int \tan ^{\frac {5}{2}}(c+d x) \left (\frac {1}{2} a \left (9 a^2-7 b^2\right )+\frac {9}{2} b \left (3 a^2-b^2\right ) \tan (c+d x)+10 a b^2 \tan ^2(c+d x)\right ) \, dx\\ &=\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{63 d}+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}+\frac {2}{9} \int \tan ^{\frac {5}{2}}(c+d x) \left (\frac {9}{2} a \left (a^2-3 b^2\right )+\frac {9}{2} b \left (3 a^2-b^2\right ) \tan (c+d x)\right ) \, dx\\ &=\frac {2 b \left (3 a^2-b^2\right ) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{63 d}+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}+\frac {2}{9} \int \tan ^{\frac {3}{2}}(c+d x) \left (-\frac {9}{2} b \left (3 a^2-b^2\right )+\frac {9}{2} a \left (a^2-3 b^2\right ) \tan (c+d x)\right ) \, dx\\ &=\frac {2 a \left (a^2-3 b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 b \left (3 a^2-b^2\right ) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{63 d}+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}+\frac {2}{9} \int \sqrt {\tan (c+d x)} \left (-\frac {9}{2} a \left (a^2-3 b^2\right )-\frac {9}{2} b \left (3 a^2-b^2\right ) \tan (c+d x)\right ) \, dx\\ &=-\frac {2 b \left (3 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {2 a \left (a^2-3 b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 b \left (3 a^2-b^2\right ) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{63 d}+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}+\frac {2}{9} \int \frac {\frac {9}{2} b \left (3 a^2-b^2\right )-\frac {9}{2} a \left (a^2-3 b^2\right ) \tan (c+d x)}{\sqrt {\tan (c+d x)}} \, dx\\ &=-\frac {2 b \left (3 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {2 a \left (a^2-3 b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 b \left (3 a^2-b^2\right ) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{63 d}+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}+\frac {4 \operatorname {Subst}\left (\int \frac {\frac {9}{2} b \left (3 a^2-b^2\right )-\frac {9}{2} a \left (a^2-3 b^2\right ) x^2}{1+x^4} \, dx,x,\sqrt {\tan (c+d x)}\right )}{9 d}\\ &=-\frac {2 b \left (3 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {2 a \left (a^2-3 b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 b \left (3 a^2-b^2\right ) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{63 d}+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}-\frac {\left ((a+b) \left (a^2-4 a b+b^2\right )\right ) \operatorname {Subst}\left (\int \frac {1+x^2}{1+x^4} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d}+\frac {\left ((a-b) \left (a^2+4 a b+b^2\right )\right ) \operatorname {Subst}\left (\int \frac {1-x^2}{1+x^4} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d}\\ &=-\frac {2 b \left (3 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {2 a \left (a^2-3 b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 b \left (3 a^2-b^2\right ) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{63 d}+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}-\frac {\left ((a+b) \left (a^2-4 a b+b^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 d}-\frac {\left ((a+b) \left (a^2-4 a b+b^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 d}-\frac {\left ((a-b) \left (a^2+4 a b+b^2\right )\right ) \operatorname {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 \sqrt {2} d}-\frac {\left ((a-b) \left (a^2+4 a b+b^2\right )\right ) \operatorname {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,\sqrt {\tan (c+d x)}\right )}{2 \sqrt {2} d}\\ &=-\frac {(a-b) \left (a^2+4 a b+b^2\right ) \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}+\frac {(a-b) \left (a^2+4 a b+b^2\right ) \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}-\frac {2 b \left (3 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {2 a \left (a^2-3 b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 b \left (3 a^2-b^2\right ) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{63 d}+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}-\frac {\left ((a+b) \left (a^2-4 a b+b^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}+\frac {\left ((a+b) \left (a^2-4 a b+b^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}\\ &=\frac {(a+b) \left (a^2-4 a b+b^2\right ) \tan ^{-1}\left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {(a+b) \left (a^2-4 a b+b^2\right ) \tan ^{-1}\left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {(a-b) \left (a^2+4 a b+b^2\right ) \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}+\frac {(a-b) \left (a^2+4 a b+b^2\right ) \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}-\frac {2 b \left (3 a^2-b^2\right ) \sqrt {\tan (c+d x)}}{d}+\frac {2 a \left (a^2-3 b^2\right ) \tan ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2 b \left (3 a^2-b^2\right ) \tan ^{\frac {5}{2}}(c+d x)}{5 d}+\frac {40 a b^2 \tan ^{\frac {7}{2}}(c+d x)}{63 d}+\frac {2 b^2 \tan ^{\frac {7}{2}}(c+d x) (a+b \tan (c+d x))}{9 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 3.08, size = 164, normalized size = 0.50 \[ \frac {2 \sqrt {\tan (c+d x)} \left (-63 b \left (b^2-3 a^2\right ) \tan ^2(c+d x)+105 a \left (a^2-3 b^2\right ) \tan (c+d x)+315 b \left (b^2-3 a^2\right )+135 a b^2 \tan ^3(c+d x)+35 b^3 \tan ^4(c+d x)\right )-315 (-1)^{3/4} (a-i b)^3 \tan ^{-1}\left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )+315 (-1)^{3/4} (a+i b)^3 \tanh ^{-1}\left ((-1)^{3/4} \sqrt {\tan (c+d x)}\right )}{315 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]^(5/2)*(a + b*Tan[c + d*x])^3,x]

[Out]

(-315*(-1)^(3/4)*(a - I*b)^3*ArcTan[(-1)^(3/4)*Sqrt[Tan[c + d*x]]] + 315*(-1)^(3/4)*(a + I*b)^3*ArcTanh[(-1)^(
3/4)*Sqrt[Tan[c + d*x]]] + 2*Sqrt[Tan[c + d*x]]*(315*b*(-3*a^2 + b^2) + 105*a*(a^2 - 3*b^2)*Tan[c + d*x] - 63*
b*(-3*a^2 + b^2)*Tan[c + d*x]^2 + 135*a*b^2*Tan[c + d*x]^3 + 35*b^3*Tan[c + d*x]^4))/(315*d)

________________________________________________________________________________________

fricas [B]  time = 2.75, size = 7332, normalized size = 22.35 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(5/2)*(a+b*tan(d*x+c))^3,x, algorithm="fricas")

[Out]

1/1260*(1260*sqrt(2)*d^5*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12 -
2*(3*a^5*b - 10*a^3*b^3 + 3*a*b^5)*d^2*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*
b^10 + b^12)/d^4))/(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12))*((a^12
 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)^(3/4)*sqrt((a^12 - 30*a^10*b^2
+ 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d^4)*arctan(-((a^24 - 6*a^22*b^2 - 84*a^20*b^4
 - 322*a^18*b^6 - 603*a^16*b^8 - 540*a^14*b^10 + 540*a^10*b^14 + 603*a^8*b^16 + 322*a^6*b^18 + 84*a^4*b^20 + 6
*a^2*b^22 - b^24)*d^4*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)
*sqrt((a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d^4) + sqrt(2)*((3*a
^2*b - b^3)*d^7*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)*sqrt(
(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d^4) + (a^9 - 6*a^5*b^4 -
8*a^3*b^6 - 3*a*b^8)*d^5*sqrt((a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^
12)/d^4))*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12 - 2*(3*a^5*b - 10
*a^3*b^3 + 3*a*b^5)*d^2*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^
4))/(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12))*sqrt(((a^18 - 27*a^16
*b^2 + 168*a^14*b^4 + 224*a^12*b^6 - 366*a^10*b^8 - 366*a^8*b^10 + 224*a^6*b^12 + 168*a^4*b^14 - 27*a^2*b^16 +
 b^18)*d^2*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)*cos(d*x +
c) + sqrt(2)*((a^15 - 33*a^13*b^2 + 345*a^11*b^4 - 1217*a^9*b^6 + 1611*a^7*b^8 - 795*a^5*b^10 + 91*a^3*b^12 -
3*a*b^14)*d^3*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)*cos(d*x
 + c) + (3*a^20*b - 82*a^18*b^3 + 531*a^16*b^5 + 504*a^14*b^7 - 1322*a^12*b^9 - 732*a^10*b^11 + 1038*a^8*b^13
+ 280*a^6*b^15 - 249*a^4*b^17 + 30*a^2*b^19 - b^21)*d*cos(d*x + c))*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*
a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12 - 2*(3*a^5*b - 10*a^3*b^3 + 3*a*b^5)*d^2*sqrt((a^12 + 6*a^10*b^2 + 15
*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4))/(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6
+ 255*a^4*b^8 - 30*a^2*b^10 + b^12))*sqrt(sin(d*x + c)/cos(d*x + c))*((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6
*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)^(1/4) + (a^24 - 24*a^22*b^2 + 90*a^20*b^4 + 648*a^18*b^6 + 783*a^1
6*b^8 - 624*a^14*b^10 - 1748*a^12*b^12 - 624*a^10*b^14 + 783*a^8*b^16 + 648*a^6*b^18 + 90*a^4*b^20 - 24*a^2*b^
22 + b^24)*sin(d*x + c))/cos(d*x + c))*((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10
 + b^12)/d^4)^(3/4) + sqrt(2)*((3*a^14*b - 37*a^12*b^3 - 69*a^10*b^5 + 27*a^8*b^7 + 81*a^6*b^9 + 9*a^4*b^11 -
15*a^2*b^13 + b^15)*d^7*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^
4)*sqrt((a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d^4) + (a^21 - 12*
a^19*b^2 - 33*a^17*b^4 + 64*a^15*b^6 + 282*a^13*b^8 + 264*a^11*b^10 - 82*a^9*b^12 - 288*a^7*b^14 - 171*a^5*b^1
6 - 28*a^3*b^18 + 3*a*b^20)*d^5*sqrt((a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^
10 + b^12)/d^4))*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12 - 2*(3*a^5
*b - 10*a^3*b^3 + 3*a*b^5)*d^2*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b
^12)/d^4))/(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12))*sqrt(sin(d*x +
 c)/cos(d*x + c))*((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)^(3/4))/
(a^36 - 18*a^34*b^2 - 39*a^32*b^4 + 848*a^30*b^6 + 5556*a^28*b^8 + 15240*a^26*b^10 + 20420*a^24*b^12 + 5424*a^
22*b^14 - 25938*a^20*b^16 - 42988*a^18*b^18 - 25938*a^16*b^20 + 5424*a^14*b^22 + 20420*a^12*b^24 + 15240*a^10*
b^26 + 5556*a^8*b^28 + 848*a^6*b^30 - 39*a^4*b^32 - 18*a^2*b^34 + b^36))*cos(d*x + c)^4 + 1260*sqrt(2)*d^5*sqr
t((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12 - 2*(3*a^5*b - 10*a^3*b^3 + 3*
a*b^5)*d^2*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4))/(a^12 - 3
0*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12))*((a^12 + 6*a^10*b^2 + 15*a^8*b^4 +
 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)^(3/4)*sqrt((a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6
+ 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d^4)*arctan(((a^24 - 6*a^22*b^2 - 84*a^20*b^4 - 322*a^18*b^6 - 603*a^16*b^
8 - 540*a^14*b^10 + 540*a^10*b^14 + 603*a^8*b^16 + 322*a^6*b^18 + 84*a^4*b^20 + 6*a^2*b^22 - b^24)*d^4*sqrt((a
^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)*sqrt((a^12 - 30*a^10*b^2 + 2
55*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d^4) - sqrt(2)*((3*a^2*b - b^3)*d^7*sqrt((a^12 +
6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)*sqrt((a^12 - 30*a^10*b^2 + 255*a^8
*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d^4) + (a^9 - 6*a^5*b^4 - 8*a^3*b^6 - 3*a*b^8)*d^5*sqrt
((a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d^4))*sqrt((a^12 + 6*a^10
*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12 - 2*(3*a^5*b - 10*a^3*b^3 + 3*a*b^5)*d^2*sqrt(
(a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4))/(a^12 - 30*a^10*b^2 + 255
*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12))*sqrt(((a^18 - 27*a^16*b^2 + 168*a^14*b^4 + 224*a^1
2*b^6 - 366*a^10*b^8 - 366*a^8*b^10 + 224*a^6*b^12 + 168*a^4*b^14 - 27*a^2*b^16 + b^18)*d^2*sqrt((a^12 + 6*a^1
0*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)*cos(d*x + c) - sqrt(2)*((a^15 - 33*a^13
*b^2 + 345*a^11*b^4 - 1217*a^9*b^6 + 1611*a^7*b^8 - 795*a^5*b^10 + 91*a^3*b^12 - 3*a*b^14)*d^3*sqrt((a^12 + 6*
a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)*cos(d*x + c) + (3*a^20*b - 82*a^18*b
^3 + 531*a^16*b^5 + 504*a^14*b^7 - 1322*a^12*b^9 - 732*a^10*b^11 + 1038*a^8*b^13 + 280*a^6*b^15 - 249*a^4*b^17
 + 30*a^2*b^19 - b^21)*d*cos(d*x + c))*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*
b^10 + b^12 - 2*(3*a^5*b - 10*a^3*b^3 + 3*a*b^5)*d^2*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^
4*b^8 + 6*a^2*b^10 + b^12)/d^4))/(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 +
 b^12))*sqrt(sin(d*x + c)/cos(d*x + c))*((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^1
0 + b^12)/d^4)^(1/4) + (a^24 - 24*a^22*b^2 + 90*a^20*b^4 + 648*a^18*b^6 + 783*a^16*b^8 - 624*a^14*b^10 - 1748*
a^12*b^12 - 624*a^10*b^14 + 783*a^8*b^16 + 648*a^6*b^18 + 90*a^4*b^20 - 24*a^2*b^22 + b^24)*sin(d*x + c))/cos(
d*x + c))*((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)^(3/4) - sqrt(2)
*((3*a^14*b - 37*a^12*b^3 - 69*a^10*b^5 + 27*a^8*b^7 + 81*a^6*b^9 + 9*a^4*b^11 - 15*a^2*b^13 + b^15)*d^7*sqrt(
(a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)*sqrt((a^12 - 30*a^10*b^2 +
 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d^4) + (a^21 - 12*a^19*b^2 - 33*a^17*b^4 + 64*a
^15*b^6 + 282*a^13*b^8 + 264*a^11*b^10 - 82*a^9*b^12 - 288*a^7*b^14 - 171*a^5*b^16 - 28*a^3*b^18 + 3*a*b^20)*d
^5*sqrt((a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d^4))*sqrt((a^12 +
 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12 - 2*(3*a^5*b - 10*a^3*b^3 + 3*a*b^5)*d^
2*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4))/(a^12 - 30*a^10*b^
2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12))*sqrt(sin(d*x + c)/cos(d*x + c))*((a^12 + 6*
a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)^(3/4))/(a^36 - 18*a^34*b^2 - 39*a^32
*b^4 + 848*a^30*b^6 + 5556*a^28*b^8 + 15240*a^26*b^10 + 20420*a^24*b^12 + 5424*a^22*b^14 - 25938*a^20*b^16 - 4
2988*a^18*b^18 - 25938*a^16*b^20 + 5424*a^14*b^22 + 20420*a^12*b^24 + 15240*a^10*b^26 + 5556*a^8*b^28 + 848*a^
6*b^30 - 39*a^4*b^32 - 18*a^2*b^34 + b^36))*cos(d*x + c)^4 + 315*sqrt(2)*(2*(3*a^5*b - 10*a^3*b^3 + 3*a*b^5)*d
^3*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)*cos(d*x + c)^4 + (
a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d*cos(d*x + c)^4)*sqrt((a^12 + 6
*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12 - 2*(3*a^5*b - 10*a^3*b^3 + 3*a*b^5)*d^2*
sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4))/(a^12 - 30*a^10*b^2
+ 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12))*((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6
 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)^(1/4)*log(((a^18 - 27*a^16*b^2 + 168*a^14*b^4 + 224*a^12*b^6 - 366*a^1
0*b^8 - 366*a^8*b^10 + 224*a^6*b^12 + 168*a^4*b^14 - 27*a^2*b^16 + b^18)*d^2*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*
b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)*cos(d*x + c) + sqrt(2)*((a^15 - 33*a^13*b^2 + 345*a^11
*b^4 - 1217*a^9*b^6 + 1611*a^7*b^8 - 795*a^5*b^10 + 91*a^3*b^12 - 3*a*b^14)*d^3*sqrt((a^12 + 6*a^10*b^2 + 15*a
^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)*cos(d*x + c) + (3*a^20*b - 82*a^18*b^3 + 531*a^16*b
^5 + 504*a^14*b^7 - 1322*a^12*b^9 - 732*a^10*b^11 + 1038*a^8*b^13 + 280*a^6*b^15 - 249*a^4*b^17 + 30*a^2*b^19
- b^21)*d*cos(d*x + c))*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12 - 2
*(3*a^5*b - 10*a^3*b^3 + 3*a*b^5)*d^2*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b
^10 + b^12)/d^4))/(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12))*sqrt(si
n(d*x + c)/cos(d*x + c))*((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)^
(1/4) + (a^24 - 24*a^22*b^2 + 90*a^20*b^4 + 648*a^18*b^6 + 783*a^16*b^8 - 624*a^14*b^10 - 1748*a^12*b^12 - 624
*a^10*b^14 + 783*a^8*b^16 + 648*a^6*b^18 + 90*a^4*b^20 - 24*a^2*b^22 + b^24)*sin(d*x + c))/cos(d*x + c)) - 315
*sqrt(2)*(2*(3*a^5*b - 10*a^3*b^3 + 3*a*b^5)*d^3*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^
8 + 6*a^2*b^10 + b^12)/d^4)*cos(d*x + c)^4 + (a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2
*b^10 + b^12)*d*cos(d*x + c)^4)*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 +
b^12 - 2*(3*a^5*b - 10*a^3*b^3 + 3*a*b^5)*d^2*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 +
 6*a^2*b^10 + b^12)/d^4))/(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12))
*((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)^(1/4)*log(((a^18 - 27*a^
16*b^2 + 168*a^14*b^4 + 224*a^12*b^6 - 366*a^10*b^8 - 366*a^8*b^10 + 224*a^6*b^12 + 168*a^4*b^14 - 27*a^2*b^16
 + b^18)*d^2*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)*cos(d*x
+ c) - sqrt(2)*((a^15 - 33*a^13*b^2 + 345*a^11*b^4 - 1217*a^9*b^6 + 1611*a^7*b^8 - 795*a^5*b^10 + 91*a^3*b^12
- 3*a*b^14)*d^3*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)*cos(d
*x + c) + (3*a^20*b - 82*a^18*b^3 + 531*a^16*b^5 + 504*a^14*b^7 - 1322*a^12*b^9 - 732*a^10*b^11 + 1038*a^8*b^1
3 + 280*a^6*b^15 - 249*a^4*b^17 + 30*a^2*b^19 - b^21)*d*cos(d*x + c))*sqrt((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 2
0*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12 - 2*(3*a^5*b - 10*a^3*b^3 + 3*a*b^5)*d^2*sqrt((a^12 + 6*a^10*b^2 +
15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4))/(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^
6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12))*sqrt(sin(d*x + c)/cos(d*x + c))*((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a
^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)/d^4)^(1/4) + (a^24 - 24*a^22*b^2 + 90*a^20*b^4 + 648*a^18*b^6 + 783*a
^16*b^8 - 624*a^14*b^10 - 1748*a^12*b^12 - 624*a^10*b^14 + 783*a^8*b^16 + 648*a^6*b^18 + 90*a^4*b^20 - 24*a^2*
b^22 + b^24)*sin(d*x + c))/cos(d*x + c)) + 8*(35*a^12*b^3 + 210*a^10*b^5 + 525*a^8*b^7 + 700*a^6*b^9 + 525*a^4
*b^11 + 210*a^2*b^13 + 35*b^15 - 7*(162*a^14*b + 913*a^12*b^3 + 2076*a^10*b^5 + 2355*a^8*b^7 + 1250*a^6*b^9 +
87*a^4*b^11 - 192*a^2*b^13 - 59*b^15)*cos(d*x + c)^4 + 7*(27*a^14*b + 143*a^12*b^3 + 291*a^10*b^5 + 255*a^8*b^
7 + 25*a^6*b^9 - 123*a^4*b^11 - 87*a^2*b^13 - 19*b^15)*cos(d*x + c)^2 + 15*((7*a^15 + 12*a^13*b^2 - 75*a^11*b^
4 - 310*a^9*b^6 - 495*a^7*b^8 - 408*a^5*b^10 - 173*a^3*b^12 - 30*a*b^14)*cos(d*x + c)^3 + 9*(a^13*b^2 + 6*a^11
*b^4 + 15*a^9*b^6 + 20*a^7*b^8 + 15*a^5*b^10 + 6*a^3*b^12 + a*b^14)*cos(d*x + c))*sin(d*x + c))*sqrt(sin(d*x +
 c)/cos(d*x + c)))/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d*cos(d*x +
 c)^4)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(5/2)*(a+b*tan(d*x+c))^3,x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 0.10, size = 572, normalized size = 1.74 \[ \frac {2 \left (\tan ^{\frac {9}{2}}\left (d x +c \right )\right ) b^{3}}{9 d}+\frac {6 a \,b^{2} \left (\tan ^{\frac {7}{2}}\left (d x +c \right )\right )}{7 d}+\frac {6 \left (\tan ^{\frac {5}{2}}\left (d x +c \right )\right ) a^{2} b}{5 d}-\frac {2 b^{3} \left (\tan ^{\frac {5}{2}}\left (d x +c \right )\right )}{5 d}+\frac {2 \left (\tan ^{\frac {3}{2}}\left (d x +c \right )\right ) a^{3}}{3 d}-\frac {2 a \,b^{2} \left (\tan ^{\frac {3}{2}}\left (d x +c \right )\right )}{d}-\frac {6 a^{2} b \left (\sqrt {\tan }\left (d x +c \right )\right )}{d}+\frac {2 b^{3} \left (\sqrt {\tan }\left (d x +c \right )\right )}{d}+\frac {3 \sqrt {2}\, \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) a^{2} b}{2 d}-\frac {\sqrt {2}\, \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) b^{3}}{2 d}+\frac {3 \sqrt {2}\, \ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right ) a^{2} b}{4 d}-\frac {\sqrt {2}\, \ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right ) b^{3}}{4 d}+\frac {3 \sqrt {2}\, \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) a^{2} b}{2 d}-\frac {\sqrt {2}\, \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) b^{3}}{2 d}-\frac {\sqrt {2}\, \ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right ) a^{3}}{4 d}+\frac {3 \sqrt {2}\, \ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right ) a \,b^{2}}{4 d}-\frac {\sqrt {2}\, \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) a^{3}}{2 d}+\frac {3 \sqrt {2}\, \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) a \,b^{2}}{2 d}-\frac {\sqrt {2}\, \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) a^{3}}{2 d}+\frac {3 \sqrt {2}\, \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right ) a \,b^{2}}{2 d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^(5/2)*(a+b*tan(d*x+c))^3,x)

[Out]

2/9/d*tan(d*x+c)^(9/2)*b^3+6/7*a*b^2*tan(d*x+c)^(7/2)/d+6/5/d*tan(d*x+c)^(5/2)*a^2*b-2/5/d*b^3*tan(d*x+c)^(5/2
)+2/3/d*tan(d*x+c)^(3/2)*a^3-2*a*b^2*tan(d*x+c)^(3/2)/d-6/d*a^2*b*tan(d*x+c)^(1/2)+2/d*b^3*tan(d*x+c)^(1/2)+3/
2/d*2^(1/2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*a^2*b-1/2/d*2^(1/2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*b^3+3/
4/d*2^(1/2)*ln((1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))*a^2*b-1/4/d*2^
(1/2)*ln((1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))*b^3+3/2/d*2^(1/2)*ar
ctan(1+2^(1/2)*tan(d*x+c)^(1/2))*a^2*b-1/2/d*2^(1/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))*b^3-1/4/d*2^(1/2)*ln((
1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))*a^3+3/4/d*2^(1/2)*ln((1-2^(1/2
)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))*a*b^2-1/2/d*2^(1/2)*arctan(-1+2^(1/2)*
tan(d*x+c)^(1/2))*a^3+3/2/d*2^(1/2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))*a*b^2-1/2/d*2^(1/2)*arctan(1+2^(1/2)*t
an(d*x+c)^(1/2))*a^3+3/2/d*2^(1/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))*a*b^2

________________________________________________________________________________________

maxima [A]  time = 0.67, size = 280, normalized size = 0.85 \[ \frac {280 \, b^{3} \tan \left (d x + c\right )^{\frac {9}{2}} + 1080 \, a b^{2} \tan \left (d x + c\right )^{\frac {7}{2}} + 504 \, {\left (3 \, a^{2} b - b^{3}\right )} \tan \left (d x + c\right )^{\frac {5}{2}} - 630 \, \sqrt {2} {\left (a^{3} - 3 \, a^{2} b - 3 \, a b^{2} + b^{3}\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) - 630 \, \sqrt {2} {\left (a^{3} - 3 \, a^{2} b - 3 \, a b^{2} + b^{3}\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) + 315 \, \sqrt {2} {\left (a^{3} + 3 \, a^{2} b - 3 \, a b^{2} - b^{3}\right )} \log \left (\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) - 315 \, \sqrt {2} {\left (a^{3} + 3 \, a^{2} b - 3 \, a b^{2} - b^{3}\right )} \log \left (-\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) + 840 \, {\left (a^{3} - 3 \, a b^{2}\right )} \tan \left (d x + c\right )^{\frac {3}{2}} - 2520 \, {\left (3 \, a^{2} b - b^{3}\right )} \sqrt {\tan \left (d x + c\right )}}{1260 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(5/2)*(a+b*tan(d*x+c))^3,x, algorithm="maxima")

[Out]

1/1260*(280*b^3*tan(d*x + c)^(9/2) + 1080*a*b^2*tan(d*x + c)^(7/2) + 504*(3*a^2*b - b^3)*tan(d*x + c)^(5/2) -
630*sqrt(2)*(a^3 - 3*a^2*b - 3*a*b^2 + b^3)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(tan(d*x + c)))) - 630*sqrt(2)
*(a^3 - 3*a^2*b - 3*a*b^2 + b^3)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*sqrt(tan(d*x + c)))) + 315*sqrt(2)*(a^3 + 3*
a^2*b - 3*a*b^2 - b^3)*log(sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1) - 315*sqrt(2)*(a^3 + 3*a^2*b - 3*a*b
^2 - b^3)*log(-sqrt(2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1) + 840*(a^3 - 3*a*b^2)*tan(d*x + c)^(3/2) - 2520*
(3*a^2*b - b^3)*sqrt(tan(d*x + c)))/d

________________________________________________________________________________________

mupad [B]  time = 10.12, size = 1796, normalized size = 5.48 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)^(5/2)*(a + b*tan(c + d*x))^3,x)

[Out]

tan(c + d*x)^(3/2)*((2*a^3)/(3*d) - (2*a*b^2)/d) + tan(c + d*x)^(1/2)*((2*b^3)/d - (6*a^2*b)/d) - tan(c + d*x)
^(5/2)*((2*b^3)/(5*d) - (6*a^2*b)/(5*d)) + atan((((8*(4*b^3*d^2 - 12*a^2*b*d^2)*((6*a*b^5 + 6*a^5*b - a^6*1i +
 b^6*1i - a^2*b^4*15i - 20*a^3*b^3 + a^4*b^2*15i)/(4*d^2))^(1/2))/d^3 - (16*tan(c + d*x)^(1/2)*(a^6 - b^6 + 15
*a^2*b^4 - 15*a^4*b^2))/d^2)*((6*a*b^5 + 6*a^5*b - a^6*1i + b^6*1i - a^2*b^4*15i - 20*a^3*b^3 + a^4*b^2*15i)/(
4*d^2))^(1/2)*1i - ((8*(4*b^3*d^2 - 12*a^2*b*d^2)*((6*a*b^5 + 6*a^5*b - a^6*1i + b^6*1i - a^2*b^4*15i - 20*a^3
*b^3 + a^4*b^2*15i)/(4*d^2))^(1/2))/d^3 + (16*tan(c + d*x)^(1/2)*(a^6 - b^6 + 15*a^2*b^4 - 15*a^4*b^2))/d^2)*(
(6*a*b^5 + 6*a^5*b - a^6*1i + b^6*1i - a^2*b^4*15i - 20*a^3*b^3 + a^4*b^2*15i)/(4*d^2))^(1/2)*1i)/(((8*(4*b^3*
d^2 - 12*a^2*b*d^2)*((6*a*b^5 + 6*a^5*b - a^6*1i + b^6*1i - a^2*b^4*15i - 20*a^3*b^3 + a^4*b^2*15i)/(4*d^2))^(
1/2))/d^3 - (16*tan(c + d*x)^(1/2)*(a^6 - b^6 + 15*a^2*b^4 - 15*a^4*b^2))/d^2)*((6*a*b^5 + 6*a^5*b - a^6*1i +
b^6*1i - a^2*b^4*15i - 20*a^3*b^3 + a^4*b^2*15i)/(4*d^2))^(1/2) - (16*(3*a*b^8 - a^9 + 8*a^3*b^6 + 6*a^5*b^4))
/d^3 + ((8*(4*b^3*d^2 - 12*a^2*b*d^2)*((6*a*b^5 + 6*a^5*b - a^6*1i + b^6*1i - a^2*b^4*15i - 20*a^3*b^3 + a^4*b
^2*15i)/(4*d^2))^(1/2))/d^3 + (16*tan(c + d*x)^(1/2)*(a^6 - b^6 + 15*a^2*b^4 - 15*a^4*b^2))/d^2)*((6*a*b^5 + 6
*a^5*b - a^6*1i + b^6*1i - a^2*b^4*15i - 20*a^3*b^3 + a^4*b^2*15i)/(4*d^2))^(1/2)))*((6*a*b^5 + 6*a^5*b - a^6*
1i + b^6*1i - a^2*b^4*15i - 20*a^3*b^3 + a^4*b^2*15i)/(4*d^2))^(1/2)*2i + atan((((8*(4*b^3*d^2 - 12*a^2*b*d^2)
*((6*a*b^5 + 6*a^5*b + a^6*1i - b^6*1i + a^2*b^4*15i - 20*a^3*b^3 - a^4*b^2*15i)/(4*d^2))^(1/2))/d^3 - (16*tan
(c + d*x)^(1/2)*(a^6 - b^6 + 15*a^2*b^4 - 15*a^4*b^2))/d^2)*((6*a*b^5 + 6*a^5*b + a^6*1i - b^6*1i + a^2*b^4*15
i - 20*a^3*b^3 - a^4*b^2*15i)/(4*d^2))^(1/2)*1i - ((8*(4*b^3*d^2 - 12*a^2*b*d^2)*((6*a*b^5 + 6*a^5*b + a^6*1i
- b^6*1i + a^2*b^4*15i - 20*a^3*b^3 - a^4*b^2*15i)/(4*d^2))^(1/2))/d^3 + (16*tan(c + d*x)^(1/2)*(a^6 - b^6 + 1
5*a^2*b^4 - 15*a^4*b^2))/d^2)*((6*a*b^5 + 6*a^5*b + a^6*1i - b^6*1i + a^2*b^4*15i - 20*a^3*b^3 - a^4*b^2*15i)/
(4*d^2))^(1/2)*1i)/(((8*(4*b^3*d^2 - 12*a^2*b*d^2)*((6*a*b^5 + 6*a^5*b + a^6*1i - b^6*1i + a^2*b^4*15i - 20*a^
3*b^3 - a^4*b^2*15i)/(4*d^2))^(1/2))/d^3 - (16*tan(c + d*x)^(1/2)*(a^6 - b^6 + 15*a^2*b^4 - 15*a^4*b^2))/d^2)*
((6*a*b^5 + 6*a^5*b + a^6*1i - b^6*1i + a^2*b^4*15i - 20*a^3*b^3 - a^4*b^2*15i)/(4*d^2))^(1/2) - (16*(3*a*b^8
- a^9 + 8*a^3*b^6 + 6*a^5*b^4))/d^3 + ((8*(4*b^3*d^2 - 12*a^2*b*d^2)*((6*a*b^5 + 6*a^5*b + a^6*1i - b^6*1i + a
^2*b^4*15i - 20*a^3*b^3 - a^4*b^2*15i)/(4*d^2))^(1/2))/d^3 + (16*tan(c + d*x)^(1/2)*(a^6 - b^6 + 15*a^2*b^4 -
15*a^4*b^2))/d^2)*((6*a*b^5 + 6*a^5*b + a^6*1i - b^6*1i + a^2*b^4*15i - 20*a^3*b^3 - a^4*b^2*15i)/(4*d^2))^(1/
2)))*((6*a*b^5 + 6*a^5*b + a^6*1i - b^6*1i + a^2*b^4*15i - 20*a^3*b^3 - a^4*b^2*15i)/(4*d^2))^(1/2)*2i + (2*b^
3*tan(c + d*x)^(9/2))/(9*d) + (6*a*b^2*tan(c + d*x)^(7/2))/(7*d)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a + b \tan {\left (c + d x \right )}\right )^{3} \tan ^{\frac {5}{2}}{\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**(5/2)*(a+b*tan(d*x+c))**3,x)

[Out]

Integral((a + b*tan(c + d*x))**3*tan(c + d*x)**(5/2), x)

________________________________________________________________________________________